0x00
在一文中,我们分析了dex文件怎样形成了DexFile结构体。本文中解说类载入机制,实际上就是生成ClassObject对象。
我们以DexClassLoader为例。解说类载入机制,PathClassLoader是一样的。
我们在载入类时一般会调用loadClass,那么我们就从loadClass来開始分析。
0x01
DexClassLoader类没有loadClass方法。所以调用的是父类ClassLoader类的loadClass方法,ClassLoader类的loadClass方法位于libcore\luni\src\main\java\java\lang\ClassLoader.java中。
protected Class loadClass(String className, boolean resolve) throws ClassNotFoundException { Class clazz = findLoadedClass(className); if (clazz == null) { try { clazz = parent.loadClass(className, false); } catch (ClassNotFoundException e) { // Don't want to see this. } if (clazz == null) { clazz = findClass(className); } } return clazz; }DexClassLoader复写了父类ClassLoader的findClass方法。所以调用子类DexClassLoader类的方法findClass。代码位于libcore\dalvik\src\main\java\dalvik\system\DexClassLoader.java。
@Override protected Class findClass(String name) throws ClassNotFoundException { if (VERBOSE_DEBUG) System.out.println("DexClassLoader " + this + ": findClass '" + name + "'"); int length = mFiles.length; for (int i = 0; i < length; i++) { if (VERBOSE_DEBUG) System.out.println(" Now searching: " + mFiles[i].getPath()); if (mDexs[i] != null) { String slashName = name.replace('.', '/'); Class clazz = mDexs[i].loadClass(slashName, this); if (clazz != null) { if (VERBOSE_DEBUG) System.out.println(" found"); return clazz; } } } throw new ClassNotFoundException(name + " in loader " + this); }这里调用的是DexFile类的loadClass方法,代码位于libcore\dalvik\src\main\java\dalvik\system\DexFile.java。
public Class loadClass(String name, ClassLoader loader) { String slashName = name.replace('.', '/'); return loadClassBinaryName(slashName, loader); }
public Class loadClassBinaryName(String name, ClassLoader loader) { return defineClass(name, loader, mCookie, null); //new ProtectionDomain(name) /*DEBUG ONLY*/); }defineClass相应的是JNI方法,例如以下:
native private static Class defineClass(String name, ClassLoader loader, int cookie, ProtectionDomain pd);还记得 在 一文中,openDexFile也是JNI方法。 相应的native方法位于dalvik\vm\native\dalvik_system_DexFile.c。
const DalvikNativeMethod dvm_dalvik_system_DexFile[] = { { "openDexFile", "(Ljava/lang/String;Ljava/lang/String;I)I", Dalvik_dalvik_system_DexFile_openDexFile }, { "closeDexFile", "(I)V", Dalvik_dalvik_system_DexFile_closeDexFile }, { "defineClass", "(Ljava/lang/String;Ljava/lang/ClassLoader;ILjava/security/ProtectionDomain;)Ljava/lang/Class;", Dalvik_dalvik_system_DexFile_defineClass }, { "getClassNameList", "(I)[Ljava/lang/String;", Dalvik_dalvik_system_DexFile_getClassNameList }, { "isDexOptNeeded", "(Ljava/lang/String;)Z", Dalvik_dalvik_system_DexFile_isDexOptNeeded }, { NULL, NULL, NULL },};
defineClass相应的是Dalvik_dalvik_system_DexFile_defineClass方法。注意defineClass函数传递进来的參数有一个是mCookie,就是在一文中。openDexFile生成的,利用这个mCookie能够在native层找到openDexFile生成的DexFile结构体。
0x02Dalvik_dalvik_system_DexFile_defineClass代码位于dalvik\vm\native\dalvik_system_DexFile.c。
static void Dalvik_dalvik_system_DexFile_defineClass(const u4* args, JValue* pResult){ StringObject* nameObj = (StringObject*) args[0]; Object* loader = (Object*) args[1]; int cookie = args[2]; Object* pd = (Object*) args[3]; ClassObject* clazz = NULL; DexOrJar* pDexOrJar = (DexOrJar*) cookie; DvmDex* pDvmDex; char* name; char* descriptor; name = dvmCreateCstrFromString(nameObj); descriptor = dvmDotToDescriptor(name); LOGV("--- Explicit class load '%s' 0x%08x\n", descriptor, cookie); free(name); if (!validateCookie(cookie)) RETURN_VOID(); if (pDexOrJar->isDex) pDvmDex = dvmGetRawDexFileDex(pDexOrJar->pRawDexFile); else pDvmDex = dvmGetJarFileDex(pDexOrJar->pJarFile); /* once we load something, we can't unmap the storage */ pDexOrJar->okayToFree = false; clazz = dvmDefineClass(pDvmDex, descriptor, loader); ...... ...... free(descriptor); RETURN_PTR(clazz);}首先通过cookie找到DexOrJar结构体pDexOrJar,然后依据pDexOrJar找到DvmDex结构体pDvmDex。
以下我们来分析核心函数dvmDefineClass,这个用来生成ClassObject。dvmDefineClass。findClassNoInit 方法都位于dalvik\vm\oo\Class.c。
ClassObject* dvmDefineClass(DvmDex* pDvmDex, const char* descriptor, Object* classLoader){ assert(pDvmDex != NULL); return findClassNoInit(descriptor, classLoader, pDvmDex);}
static ClassObject* findClassNoInit(const char* descriptor, Object* loader, DvmDex* pDvmDex){ Thread* self = dvmThreadSelf(); ClassObject* clazz; bool profilerNotified = false; ...... clazz = dvmLookupClass(descriptor, loader, true); if (clazz == NULL) { const DexClassDef* pClassDef; ...... if (pDvmDex == NULL) { assert(loader == NULL); /* shouldn't be here otherwise */ pDvmDex = searchBootPathForClass(descriptor, &pClassDef); } else { pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor); } ...... /* found a match, try to load it */ clazz = loadClassFromDex(pDvmDex, pClassDef, loader); ...... if (!dvmAddClassToHash(clazz)) { ...... } ...... } return clazz;}首先调用dvmLookupClass方法,依据目标类的描写叙述符descriptor在系统已载入类中进行查找,如果已对其载入,则返回目标类的ClassObject对象;否则,将对目标类进行载入。
我们如果没有对其载入过,然后调用dexFindClass方法找到DexClassDef结构体。我们首先来看下DexClassDef结构体,代码位于dalvik\vm\oo\Class.c。
typedef struct DexClassDef { u4 classIdx; /* index into typeIds for this class */ u4 accessFlags; u4 superclassIdx; /* index into typeIds for superclass */ u4 interfacesOff; /* file offset to DexTypeList */ u4 sourceFileIdx; /* index into stringIds for source file name */ u4 annotationsOff; /* file offset to annotations_directory_item */ u4 classDataOff; /* file offset to class_data_item */ u4 staticValuesOff; /* file offset to DexEncodedArray */} DexClassDef;为了方便理解以后的代码,我这里先附上一张图。DexClassDef就是图中最左边的部分class_def_item。
dexFindClass方法也位于dalvik\vm\oo\Class.c。
const DexClassDef* dexFindClass(const DexFile* pDexFile, const char* descriptor){ const DexClassLookup* pLookup = pDexFile->pClassLookup; u4 hash; int idx, mask; hash = classDescriptorHash(descriptor); mask = pLookup->numEntries - 1; idx = hash & mask; /* * Search until we find a matching entry or an empty slot. */ while (true) { int offset; offset = pLookup->table[idx].classDescriptorOffset; if (offset == 0) return NULL; if (pLookup->table[idx].classDescriptorHash == hash) { const char* str; str = (const char*) (pDexFile->baseAddr + offset); if (strcmp(str, descriptor) == 0) { return (const DexClassDef*) (pDexFile->baseAddr + pLookup->table[idx].classDefOffset); } } idx = (idx + 1) & mask; }}最后返回值的地方解释下。pDexFile->baseAddr指向dex文件头部。后面加上的是 DexClassDef结构体距离dex文件头部的偏移。
返回到findClassNoInit,继续运行loadClassFromDex方法。这是真正生成ClassObject对象的地方。
代码位于dalvik\vm\oo\Class.c。
static ClassObject* loadClassFromDex(DvmDex* pDvmDex, const DexClassDef* pClassDef, Object* classLoader){ ClassObject* result; DexClassDataHeader header; const u1* pEncodedData; const DexFile* pDexFile; assert((pDvmDex != NULL) && (pClassDef != NULL)); pDexFile = pDvmDex->pDexFile; if (gDvm.verboseClass) { LOGV("CLASS: loading '%s'...\n", dexGetClassDescriptor(pDexFile, pClassDef)); } pEncodedData = dexGetClassData(pDexFile, pClassDef); if (pEncodedData != NULL) { dexReadClassDataHeader(&pEncodedData, &header); } else { // Provide an all-zeroes header for the rest of the loading. memset(&header, 0, sizeof(header)); } result = loadClassFromDex0(pDvmDex, pClassDef, &header, pEncodedData, classLoader); if (gDvm.verboseClass && (result != NULL)) { LOGI("[Loaded %s from DEX %p (cl=%p)]\n", result->descriptor, pDvmDex, classLoader); } return result;}dexGetClassData方法用来获取上图中的第二部分class_data_item。
代码位于dalvik\libdex\DexFile.h。
DEX_INLINE const u1* dexGetClassData(const DexFile* pDexFile, const DexClassDef* pClassDef){ if (pClassDef->classDataOff == 0) return NULL; return (const u1*) (pDexFile->baseAddr + pClassDef->classDataOff);}loadClassFromDex0用于生成终于的ClassObject对象。 代码位于 dalvik\libdex\ DexFile.h。
static ClassObject* loadClassFromDex0(DvmDex* pDvmDex, const DexClassDef* pClassDef, const DexClassDataHeader* pHeader, const u1* pEncodedData, Object* classLoader){ ClassObject* newClass = NULL; const DexFile* pDexFile; const char* descriptor; int i; pDexFile = pDvmDex->pDexFile; descriptor = dexGetClassDescriptor(pDexFile, pClassDef); /* * Make sure the aren't any "bonus" flags set, since we use them for * runtime state. */ if ((pClassDef->accessFlags & ~EXPECTED_FILE_FLAGS) != 0) { LOGW("Invalid file flags in class %s: %04x\n", descriptor, pClassDef->accessFlags); return NULL; } /* * Allocate storage for the class object on the GC heap, so that other * objects can have references to it. We bypass the usual mechanism * (allocObject), because we don't have all the bits and pieces yet. * * Note that we assume that java.lang.Class does not override * finalize(). */ /* TODO: Can there be fewer special checks in the usual path?
*/ assert(descriptor != NULL); if (classLoader == NULL && strcmp(descriptor, "Ljava/lang/Class;") == 0) { assert(gDvm.classJavaLangClass != NULL); newClass = gDvm.classJavaLangClass; } else { size_t size = classObjectSize(pHeader->staticFieldsSize); newClass = (ClassObject*) dvmMalloc(size, ALLOC_DEFAULT); } if (newClass == NULL) return NULL; DVM_OBJECT_INIT(&newClass->obj, gDvm.classJavaLangClass); dvmSetClassSerialNumber(newClass); newClass->descriptor = descriptor; assert(newClass->descriptorAlloc == NULL); newClass->accessFlags = pClassDef->accessFlags; dvmSetFieldObject((Object *)newClass, offsetof(ClassObject, classLoader), (Object *)classLoader); newClass->pDvmDex = pDvmDex; newClass->primitiveType = PRIM_NOT; newClass->status = CLASS_IDX; /* * Stuff the superclass index into the object pointer field. The linker * pulls it out and replaces it with a resolved ClassObject pointer. * I'm doing it this way (rather than having a dedicated superclassIdx * field) to save a few bytes of overhead per class. * * newClass->super is not traversed or freed by dvmFreeClassInnards, so * this is safe. */ assert(sizeof(u4) == sizeof(ClassObject*)); /* 32-bit check */ newClass->super = (ClassObject*) pClassDef->superclassIdx; /* * Stuff class reference indices into the pointer fields. * * The elements of newClass->interfaces are not traversed or freed by * dvmFreeClassInnards, so this is GC-safe. */ const DexTypeList* pInterfacesList; pInterfacesList = dexGetInterfacesList(pDexFile, pClassDef); if (pInterfacesList != NULL) { newClass->interfaceCount = pInterfacesList->size; newClass->interfaces = (ClassObject**) dvmLinearAlloc(classLoader, newClass->interfaceCount * sizeof(ClassObject*)); for (i = 0; i < newClass->interfaceCount; i++) { const DexTypeItem* pType = dexGetTypeItem(pInterfacesList, i); newClass->interfaces[i] = (ClassObject*)(u4) pType->typeIdx; } dvmLinearReadOnly(classLoader, newClass->interfaces); } /* load field definitions */ /* * Over-allocate the class object and append static field info * onto the end. It's fixed-size and known at alloc time. This * seems to increase zygote sharing. Heap compaction will have to * be careful if it ever tries to move ClassObject instances, * because we pass Field pointers around internally. But at least * now these Field pointers are in the object heap. */ if (pHeader->staticFieldsSize != 0) { /* static fields stay on system heap; field data isn't "write once" */ int count = (int) pHeader->staticFieldsSize; u4 lastIndex = 0; DexField field; newClass->sfieldCount = count; for (i = 0; i < count; i++) { dexReadClassDataField(&pEncodedData, &field, &lastIndex); loadSFieldFromDex(newClass, &field, &newClass->sfields[i]); } } if (pHeader->instanceFieldsSize != 0) { int count = (int) pHeader->instanceFieldsSize; u4 lastIndex = 0; DexField field; newClass->ifieldCount = count; newClass->ifields = (InstField*) dvmLinearAlloc(classLoader, count * sizeof(InstField)); for (i = 0; i < count; i++) { dexReadClassDataField(&pEncodedData, &field, &lastIndex); loadIFieldFromDex(newClass, &field, &newClass->ifields[i]); } dvmLinearReadOnly(classLoader, newClass->ifields); } /* * Load method definitions. We do this in two batches, direct then * virtual. * * If register maps ha